Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.278
Filter
1.
Sci Rep ; 14(1): 8366, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600294

ABSTRACT

Understanding heavy metals in rivers is crucial, as their presence and distribution impact water quality, ecosystem health, and human well-being. This study examined the presence and levels of nine heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) in 16 surface water samples along the Chao Phraya River, identifying Fe, Mn, Zn, and Cr as predominant metals. Although average concentrations in both rainy and dry seasons generally adhered to WHO guidelines, Mn exceeded these limits yet remained within Thailand's acceptable standards. Seasonal variations were observed in the Chao Phraya River, and Spearman's correlation coefficient analysis established significant associations between season and concentrations of heavy metals. The water quality index (WQI) demonstrated varied water quality statuses at each sampling point along the Chao Phraya River, indicating poor conditions during the rainy season, further deteriorating to very poor conditions in the dry season. The hazard potential index (HPI) was employed to assess heavy metal contamination, revealing that during the dry season in the estuary area, the HPI value exceeded the critical threshold index, indicating the presence of heavy metal pollution in the water and unsuitable for consumption. Using the species sensitivity distribution model, an ecological risk assessment ranked the heavy metals' HC5 values as Pb > Zn > Cr > Cu > Hg > Cd > Ni, identifying nickel as the most detrimental and lead as the least toxic. Despite Cr and Zn showing a moderate risk, and Cu and Ni posing a high risk to aquatic organisms, the main contributors to ecological risk were identified as Cu, Ni, and Zn, suggesting a significant potential ecological risk in the Chao Phraya River's surface water. The results of this study provide fundamental insights that can direct future actions in preventing and managing heavy metal pollution in the river ecosystem.


Subject(s)
Mercury , Metals, Heavy , Water Pollutants, Chemical , Humans , Cadmium/analysis , Ecosystem , Environmental Monitoring , Geologic Sediments , Lead/analysis , Mercury/analysis , Metals, Heavy/toxicity , Metals, Heavy/analysis , Risk Assessment , Rivers , Thailand , Water Pollutants, Chemical/analysis
2.
Food Chem ; 448: 139210, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569408

ABSTRACT

The detection of heavy metals in tea infusions is important because of the potential health risks associated with their consumption. Existing highly sensitive detection methods pose challenges because they are complicated and time-consuming. In this study, we developed an innovative and simple method using Ag nanoparticles-modified resin (AgNPs-MR) for pre-enrichment prior to laser-induced breakdown spectroscopy for the simultaneous analysis of Cr (III), Cu (II), and Pb (II) in tea infusions. Signal enhancement using AgNPs-MR resulted in amplification with limits of detection of 0.22 µg L-1 for Cr (III), 0.33 µg L-1 for Cu (II), and 1.25 µg L-1 for Pb (II). Quantitative analyses of these ions in infusions of black tea from various brands yielded recoveries ranging from 83.3% to 114.5%. This method is effective as a direct and highly sensitive technique for precisely quantifying trace concentrations of heavy metals in tea infusions.


Subject(s)
Chromium , Copper , Food Contamination , Lead , Metal Nanoparticles , Silver , Tea , Tea/chemistry , Chromium/analysis , Lead/analysis , Silver/chemistry , Metal Nanoparticles/chemistry , Copper/analysis , Food Contamination/analysis , Spectrum Analysis/methods , Lasers , Camellia sinensis/chemistry , Metals, Heavy/analysis , Limit of Detection
3.
ACS Sens ; 9(4): 2000-2009, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38584366

ABSTRACT

This study presents a colorimetric/electrical dual-sensing system (CEDS) for low-power, high-precision, adaptable, and real-time detection of hydrogen sulfide (H2S) gas. The lead acetate/poly(vinyl alcohol) (Pb(Ac)2/PVA) nanofiber film was transferred onto a polyethylene terephthalate (PET) flexible substrate by electrospinning to obtain colorimetric/electrical sensors. The CEDS was constructed to simultaneously record both the visual and electrical response of the sensor, and the improved Manhattan segmentation algorithm and deep neural network (DNN) were used as its intelligent algorithmic aids to achieve quantitative exposure to H2S. By exploring the mechanism of color change and resistance response of the sensor, a dual-sensitivity mechanism explanation model was proposed to verify that the system, as a dual-mode parallel system, can adequately solve the sensor redundancy problem. The results show that the CEDS can achieve a wide detection range of H2S from 0.1-100 ppm and identify the H2S concentration in 4 s at the fastest. The sensor can be stabilized for 180 days with excellent selectivity and a low limit of detection (LOD) to 0.1 ppm of H2S. In addition, the feasibility of the CEDS for measuring H2S levels in underground waterways was validated. This work provides a new method for adaptable, wide range of applications and low-power, high-precision H2S gas detection.


Subject(s)
Colorimetry , Deep Learning , Hydrogen Sulfide , Hydrogen Sulfide/analysis , Colorimetry/methods , Limit of Detection , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , Lead/analysis , Lead/chemistry , Acetates/chemistry
4.
PLoS One ; 19(4): e0294642, 2024.
Article in English | MEDLINE | ID: mdl-38630745

ABSTRACT

The Cikijing River is one of the rivers of the Citarik River Basin, which empties into the Citarum River and crosses Bandung Regency and Sumedang Regency, Indonesia. One of the uses of the Cikijing River is as a source of irrigation for rice fields in the Rancaekek area, but the current condition of the water quality of the Cikijing river has decreased, mainly due to the disposal of wastewater from the Rancaekek industrial area which is dominated by industry in the textile and textile products sector. This study aims to determine the potential ecological risks and water quality of the Cikijing River based on the content of heavy metals (Cr, Cu, Pb, and Zn). Sampling was carried out twice, during the dry and rainy seasons at ten different locations. The selection of locations took into account the ease of sampling and distribution of land use. Based on the results of this study, it was found that the water quality of the Cikijing River was classified as good based on the content of heavy metals (Cr, Cu, Pb, and Zn) with a Pollution Index 0.272 (rainy season) and 0.196 (dry season), while for the sediment compartment of the Cikijing River, according to the geoaccumulation index (Igeo) were categorized as unpolluted for heavy metals in rainy and dry seasons Cr (-3.16 and -6.97) < Cu (-0.59 and -1.05), and Pb (-1.68 and -1.91), heavily to very heavily polluted for heavy metals Zn (4.7 and 4.1) . The pollution load index (PLI) shows that the Cikijing River is classified as polluted by several heavy metals with the largest pollution being Zn> Cu > Pb > Cr. Furthermore, the results of the analysis using the Potential Ecological Risk Index (PERI) concluded that the Cikijing River has a mild ecological risk potential in rainy season (93.94) and dry season (96.49). The correlation test results concluded that there was a strong and significant relationship between the concentrations of heavy metals Pb and Zn and total dissolved solids, salinity, and electrical conductivity in the water compartment.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Environmental Monitoring/methods , Rivers , Indonesia , Lead/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/analysis , Water Quality , Metals, Heavy/analysis , Risk Assessment , China
5.
Sci Rep ; 14(1): 8140, 2024 04 07.
Article in English | MEDLINE | ID: mdl-38584184

ABSTRACT

As the data concerning element concentrations in human milk (HM) samples and their intake by infants are lacking in Poland, the present study aimed to explore this issue. The material consisted of HM samples obtained from 30 exclusively breastfeeding mothers during 4-6 weeks postpartum. Additionally, to identify the factors that may potentially affect HM composition, information regarding maternal data (anthropometry, body composition, and diet) was also collected. Maternal diet was assessed with two methods-a food frequency questionnaire and 3-day dietary records. In total, 18 essential and non-essential elements were determined. For the elements analysis, we used inductively coupled plasma quadrupole mass spectrometry. Most of the elements (n = 11, 61%) were detected in all HM samples. In all HM samples tin concentration was higher (5.67 ± 2.39 µg/L) than the usual range reported by the World Health Organization (~ 1.0 µg/L). HM cadmium content was positively associated with maternal salty snacks intake (r = 0.502, p = 0.005), arsenic with whole-grain products intake (r = 0.37, p = 0.043), and mercury concentration with fruits and seeds/nuts consumption (r = 0.424, p = 0.042 and r = 0.378, p = 0.039, respectively). Higher HM lead concentration was predicted by maternal age (95% CI [0.94-0.97]), intake of fish (95% CI [1.01-1.03]), and vegetables (95% CI [1.02-1.06]). The highest infants' intake was observed for copper (35.24 ± 12.48) and the lowest for arsenic (0.076 ± 0.102). Infants' exposure to lead was associated with maternal frequency consumption of canned fish (p = 0.0045). There is a need to perform further research on this topic to maximize the benefits of breastfeeding by minimizing maternal and infant exposure to potentially toxic elements.


Subject(s)
Arsenic , Milk, Human , Infant , Female , Animals , Humans , Milk, Human/chemistry , Arsenic/analysis , Breast Feeding , Cadmium/analysis , Lead/analysis
6.
PeerJ ; 12: e17200, 2024.
Article in English | MEDLINE | ID: mdl-38577416

ABSTRACT

Background: Dayu County, a major tungsten producer in China, experiences severe heavy metal pollution. This study evaluated the pollution status, the accumulation characteristics in paddy rice, and the potential ecological risks of heavy metals in agricutural soils near tungsten mining areas of Dayu County. Furthermore, the impacts of soil properties on the accumulation of heavy metals in soil were explored. Methods: The geo-accumulation index (Igeo), the contamination factor (CF), and the pollution load index (PLI) were used to evaluate the pollution status of metals (As, Cd, Cu, Cr, Pb, Mo, W, and Zn) in soils. The ecological risk factor (RI) was used to assess the potential ecological risks of heavy metals in soil. The health risks and accumulation of heavy metals in paddy rice were evaluated using the health risk index and the translocation factor (TF), respectively. Pearson's correlation coefficient was used to discuss the influence of soil factors on heavy metal contents in soil. Results: The concentrations of metals exceeded the respective average background values for soils (As: 10.4, Cd: 0.10, Cu: 20.8, Cr: 48.0, Pb: 32.1, Mo: 0.30, W: 4.93, Zn: 69.0, mg/kg). The levels of As, Cd, Mo, and tungsten(W) exceeded the risk screening values for Chinese agricultural soil contamination and the Dutch standard. The mean concentrations of the eight tested heavy metals followed the order FJ-S > QL > FJ-N > HL > CJ-E > CJ-W, with a significant distribution throughout the Zhangjiang River basin. Heavy metals, especially Cd, were enriched in paddy rice. The Igeo and CF assessment indicated that the soil was moderately to heavily polluted by Mo, W and Cd, and the PLI assessment indicated the the sites of FJ-S and QL were extremely severely polluted due to the contribution of Cd, Mo and W. The RI results indicated that Cd posed the highest risk near tungsten mining areas. The non-carcinogenic and total carcinogenic risks were above the threshold values (non-carcinogenic risk by HQ > 1, carcinogenic risks by CR > 1 × 10-4 a-1) for As and Cd. Correlation analysis indicated that K2O, Na2O, and CaO are main factors affecting the accumulation and migration of heavy metals in soils and plants. Our findings reveal significant contamination of soils and crops with heavy metals, especially Cd, Mo, and W, near mining areas, highlighting serious health risks. This emphasizes the need for immediate remedial actions and the implementation of stringent environmental policies to safeguard health and the environment.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Soil , Tungsten/analysis , Cadmium/analysis , Lead/analysis , Environmental Monitoring , Risk Assessment , Soil Pollutants/analysis , Metals, Heavy/analysis , Mining , China
7.
Environ Geochem Health ; 46(5): 146, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578375

ABSTRACT

With the transformation and upgrading of industries, the environmental problems caused by industrial residual contaminated sites are becoming increasingly prominent. Based on actual investigation cases, this study analyzed the soil pollution status of a remaining sites of the copper and zinc rolling industry, and found that the pollutants exceeding the screening values included Cu, Ni, Zn, Pb, total petroleum hydrocarbons and 6 polycyclic aromatic hydrocarbon monomers. Based on traditional analysis methods such as the correlation coefficient and spatial distribution, combined with machine learning methods such as SOM + K-means, it is inferred that the heavy metal Zn/Pb may be mainly related to the production history of zinc rolling. Cu/Ni may be mainly originated from the production history of copper rolling. PAHs are mainly due to the incomplete combustion of fossil fuels in the melting equipment. TPH pollution is speculated to be related to oil leakage during the industrial use period and later period of vehicle parking. The results showed that traditional analysis methods can quickly identify the correlation between site pollutants, while SOM + K-means machine learning methods can further effectively extract complex hidden relationships in data and achieve in-depth mining of site monitoring data.


Subject(s)
Environmental Pollutants , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Copper/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Lead/analysis , Soil Pollutants/analysis , Metals, Heavy/analysis , Zinc/analysis , Environmental Pollution/analysis , Soil , Environmental Pollutants/analysis , Data Mining , Environmental Monitoring/methods , China , Risk Assessment
8.
Sci Rep ; 14(1): 5662, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454098

ABSTRACT

The monitoring of essential and toxic elements in patients with Opioid Use Disorder (OUD) undergoing methadone treatment (MT) is important, and there is limited previous research on the urinary levels of these elements in MT patients. Therefore, the present study aimed to analyze certain elements in the context of methadone treatment compared to a healthy group. In this study, patients with opioid use disorder undergoing MT (n = 67) were compared with a healthy group of companions (n = 62) in terms of urinary concentrations of some essential elements (selenium (Se), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), calcium (Ca)) and toxic elements (lead (Pb), cadmium (Cd), arsenic (As), and chromium (Cr)). Urine samples were prepared using the acid digestion method with a mixture of nitric acid and perchloric acid and assessed using the ICP-MS method. Our results showed that the two groups had no significant differences in terms of gender, education level, occupation, and smoking status. Urinary concentrations of Se, Cu, and Fe levels were significantly lower in the MT group compared to the healthy subjects. However, the concentrations of Pb, Cd, As, Mn, Cr, and Ca in the MT group were higher than in the healthy group (p < 0.05). No significant difference was established between the levels of Zn in the two groups (p = 0.232). The results of regression analysis revealed that the differences between the concentration levels of all metals (except Zn) between two groups were still remained significant after adjusting for all variables (p < 0.05). The data obtained in the current study showed lower urinary concentrations of some essential elements and higher levels of some toxic elements in the MT group compared to the healthy subjects. These findings should be incorporated into harm-reduction interventions.


Subject(s)
Arsenic , Opioid-Related Disorders , Selenium , Trace Elements , Humans , Trace Elements/analysis , Cadmium/analysis , Iran , Lead/analysis , Copper/analysis , Zinc/analysis , Manganese/analysis , Selenium/analysis , Chromium/analysis , Arsenic/analysis , Opioid-Related Disorders/drug therapy , Methadone/therapeutic use
9.
Huan Jing Ke Xue ; 45(3): 1361-1370, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471852

ABSTRACT

Atmospheric PM2.5 samples were collected in Heze, Shandong Province, from a total of three sampling sites at Heze College, Huarun Pharmacy, and a wastewater treatment plant between October 15, 2017 and January 31, 2018, to determine the concentrations of 21 metal elements in PM2.5 using inductively coupled plasma mass spectrometry (ICP-MS). The degree of elemental enrichment was also discussed, the health risks and potential heavy metal ecological risks were assessed. The results showed that ρ (PM2.5) ranged from 26.7 to 284.1 µg·m-3 at the three sampling sites during the sampling period, and the concentration values did not differ significantly, all of which were at high pollution levels. The highest concentrations of K were found in the three sampling sites, accounting for 31.03%, 39.47%, and 38.43% of the total, respectively, mainly due to the high contribution of biomass burning in autumn and winter in Heze, a large agricultural city. The highest concentrations of Zn, 89.70, 84.21, and 67.68 ng·m-3, were found in the trace elements at the three sampling sites, respectively. The enrichment factor results showed that the enrichment factor values of Zn, Pb, Sn, Sb, Cd, and Se were higher than 100, among which the enrichment factors of Cd and Se were higher than 2 000 and 4 000, respectively, which were significantly influenced by anthropogenic activities and might have been related to industrial production, metal smelting, road sources, and coal combustion emissions. The health risk results showed that there was some potential non-carcinogenic risk (HQ>0.1 for children and adults) for As and a combined potential non-carcinogenic risk (HI>0.1) and some potential carcinogenic risk (CRT>1×10-6) for both children and adults at the three sampling sites. There was a more significant carcinogenic risk (CRT>1×10-4) for adults at the wastewater treatment plant, and the slightly higher carcinogenic risk for adults than that for children may have been related to the longer outdoor activity and higher PM2.5 exposure for adults. The elements with the highest potential ecological risk values were Cd, As, and Pb, with Cd exhibiting a very high potential ecological risk that should be taken seriously. All three sampling sites showed a very high combined potential ecological risk, with the intensity spatially expressed as Heze College>Huarun Pharmacy>wastewater treatment plant.


Subject(s)
Cadmium , Metals, Heavy , Child , Adult , Humans , Cadmium/analysis , Lead/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Carcinogens/analysis , Risk Assessment , Particulate Matter/analysis , China , Dust/analysis
10.
Environ Sci Pollut Res Int ; 31(17): 25059-25075, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462565

ABSTRACT

A field trial was performed to carry out an enhanced phytoremediation technique for multi-metal contaminated copper tailings by Sudan grass (Sorghum Sudanese), ryegrass (Lolium perenne L.), and Bermuda grass (Cynodon dactylon), using conditioner (TH-LZ01) and straw combination into composite amendments as soil amendments, aimed to obtain the maximum of phytoremediation effect. The results showed that compared with untreated herbaceous plants, the application of conditioner and straw planted with herbaceous plants reduced the pH and conductivity and increased the organic matter and water content of the copper tailings to different degrees. With the addition of conditioner and straw, the DTPA-Cd, DTPA-Cu, DTPA-Pb, and DTPA-Zn contents in the copper tailings showed a decreasing trend compared with the untreated group. The herbaceous plants were promoted to reduce the percentage contents of acid soluble fractions Cd, Cu, Pb, and Zn and to increase the percentage contents of reducible, oxidizable, and residual fractions heavy metals (Cd, Cu, Pb, and Zn) in the copper tailings to different degrees. The contents of Cd, Cu, Pb, and Zn in the underground part of herbaceous plants were higher than those in the aboveground part, and the contents of Cd, Cu, Pb, and Zn in the aboveground part and underground part decreased after adding conditioner and straw, which indicated that the conditioner and straw inhibited the transport of heavy metals in the plant. Furthermore, the principal component analysis showed that the application of conditioner and straw with planting ryegrass had more potential for improving the physicochemical properties of copper tailings and reducing heavy metal toxicity, followed by Bermuda grass and Sudan grass.


Subject(s)
Metals, Heavy , Soil Pollutants , Copper/analysis , Biodegradation, Environmental , Cadmium/analysis , Ponds , Lead/analysis , Soil Pollutants/analysis , Metals, Heavy/analysis , Plants , China , Soil/chemistry , Pentetic Acid
11.
Environ Sci Pollut Res Int ; 31(17): 25486-25499, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472570

ABSTRACT

Human biomonitoring of toxic trace elements is of critical importance for public health protection. The current study aims to assess the levels of selected trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) into paired human nail and hair samples (n = 180 each) from different altitudinal setting along the Indus River, and which were measured by using inductively coupled plasma mass spectrometry (ICP-MS). The human samples (hair and nail) were collected from four different ecological zones of Pakistan which include frozen mountain zone (FMZ), wet mountain zone (WMZ), riverine delta zone (RDZ), and low-lying southern areas (LLZ). Our results showed the following occurrence trends into studied hair samples: higher values (ppm) of Zn (281), Co (0.136), and Mn (5.65) at FMZ; Cr (1.37), Mn (7.83), and Ni (1.22) at WMZ; Co (0.15), Mn (11.89), and Ni (0.99) at RDZ; and Mn (8.99) and Ni (0.90) at LLZ. While in the case of nails, the levels (ppm) of Mn (9.91) at FMZ and Mn (9.38, 24.1, and 12.5), Cr (1.84, 3.87, and 2.33), and Ni (10.69, 8.89, and 12.6) at WMZ, RDZ and LLZ, respectively, showed higher concentration. In general, among the studied trace elements, Mn and Ni in hair/nail samples were consistently higher and exceeded the WHO threshold/published reference values in most of the studied samples (> 50-60%) throughout the Indus basin. Similarly, hair/nail Pb values were also higher in few cases (2-10%) at all studied zones and exceeded the WHO threshold/published reference values. Our area-wise comparisons of studied metals exhibited altitudinal trends for Cd, Cr, Zn, and Mn (p < 0.05), and surprisingly, the values were increasing from south to north (at higher altitudes) and indicative of geogenic sources of the studied toxic elements, except Mn, which was higher at lower floodplain areas. Estimated daily intake (EDI) values showed that food and drinking water had the highest contribution towards Zn, Cu, Mn, and Ni and accumulation at all studied zones. Whereas, dust also acts as the main exposure route for Mn, Co, Cr, and Cd followed by the food, and water.


Subject(s)
Drinking Water , Metals, Heavy , Trace Elements , Humans , Environmental Monitoring/methods , Biological Monitoring , Cadmium/analysis , Pakistan , Lead/analysis , Trace Elements/analysis , Drinking Water/analysis , Metals, Heavy/analysis
12.
Environ Pollut ; 348: 123787, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548159

ABSTRACT

The co-occurrence of microplastics (MPs) and heavy metal(loid)s (HMs) has attracted growing scientific interest because of their wide distribution and environmental toxicity. Nevertheless, the interactions between MPs and HMs in soil-plant systems remain unclear. We conducted a meta-analysis with 3226 observations from 87 independent studies to quantify the impact of MPs addition on the plant biomass and HMS accumulation. Co-occurrence of MPs and HMs (except for As) induced synergistic toxicity to plant growth. MPs promoted their uptake in the shoot by 11.0% for Cd, 30.0% for Pb, and 47.1% for Cu, respectively. In contrast, MPs caused a significant decrease (22.6%, 17.9-26.9%) in the shoot As accumulation. The type and dose of MPs were correlated with the accumulation of HMs. MPs increased available concentrations of Cd, Pb, and Cu, but decreased available As concentration in soils. Meanwhile, MPs addition significantly lowered soil pH. These findings may provide explanations for MPs-mediated effects on influencing the accumulation of HMs in plants. Using a machine learning approach, we revealed that soil pH and total HMs concentration are the major contributors affecting their accumulation in shoot. Overall, our study indicated that MPs may increase the environmental risks of HMs in agroecosystems, especially metal cations.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , Microplastics , Plastics , Lead/analysis , Metals, Heavy/analysis , Plants , Soil , Soil Pollutants/toxicity , Soil Pollutants/analysis
13.
Biomed Phys Eng Express ; 10(3)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38447224

ABSTRACT

This article describes the development of a system forin vivomeasurements of lead body burden in mice using109Cd K x-ray fluorescence (XRF). This K XRF system could facilitate early-stage studies on interventions that ameliorate or reverse organ tissue damage from lead poisoning by reducing animal numbers through a cross-sectional study approach. A novel mouse phantom was developed based on a mouse atlas and 3D-printed using PLA plastic with plaster of Paris 'bone' inserts. PLA plastic was found to be a good surrogate for soft tissue in XRF measurements and the phantoms were found to be good models of mice. As expected, lead detection limits varied with mouse size, mouse orientation, and mouse position with respect to the source and detector. The work suggests that detection limits of 10 to 20µg Pb per g bone mineral may be possible for a 2 to 3 hour XRF measurement in a single animal, an adequate limit for some pre-clinical studies. The109Cd K XRF mouse measurement system was also modeled using the Monte Carlo code MCNP. The combination of experiment and modeling found that contrary to expectation, accurate measurements of lead levels in mice required calibration using mouse-specific calibration standards due to the coherent scatter peak normalization failing when small animals are measured. MCNP modeling determined that this was because the coherent scatter signal from soft tissue, which until now has been assumed negligible, becomes significant when compared to the coherent scatter signal in bone in small animals. This may have implications for some human measurements. This work suggests that109Cd K x-ray fluorescence measurements of lead body burden are precise enough to make the system feasible for small animals if appropriately calibrated. Further work to validate the technology's measurement accuracy and performancein vivowill be required.


Subject(s)
Cadmium , Lead , Animals , Humans , Mice , X-Rays , Lead/analysis , Spectrometry, X-Ray Emission/methods , Feasibility Studies , Cross-Sectional Studies , Printing, Three-Dimensional , Polyesters
14.
J Hazard Mater ; 469: 134014, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38503208

ABSTRACT

Plant metal uptake can occur through both soil-root and atmospheric transfer from leaves. The latter holds potential implications for development of biofiltration systems. To explore this potential, it is crucial to understand entrapment capacity and metal sources within plants. As ferns absorb materials from atmosphere, this study focuses on two abundant fern species growing in densely populated and highly polluted regions of Eastern India. Gravimetric quantification, elemental concentration and Pb isotopic analyses were performed by segregating the ferns into distinct components: foliage dusts (loose dust (LD) and wax-bound dust (WD)) and plant tissue (leaves and roots). To understand metal sources, the study analyzes soil, and atmospheric particulates (PM10 and dust fall (DF)). Results indicate that, while LDs have soil dust influence, wax entraps atmospheric particulates and translocates them inside the leaves. Furthermore, roots demonstrate dissimilar isotopic ratios from soil, while displaying close association with atmospheric particulates. Isotopic composition and subsequent mixing model reveal dominant contribution from DF in leaves (53-73%) and roots (33-86%). Apart from DF, leaf Pb is sourced from PM10 (21-38%) with minimal contribution from soil (6-10%). Conversely, in addition to dominance from DF, roots source Pb primarily from soil (12-62%) with a meagre 2-8% contribution from PM10.


Subject(s)
Air Pollutants , Air Pollution , Ferns , Metals, Heavy , Soil Pollutants , Lead/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Air Pollution/analysis , Dust/analysis , Isotopes/analysis , Soil , Air Pollutants/analysis , Soil Pollutants/analysis
15.
J Hazard Mater ; 469: 133903, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38430601

ABSTRACT

Biochar, an environmentally friendly material, was found to passivate lead (Pb) in contaminated soil effectively. This study utilized spectroscopic investigations and partial least squares path modeling (PLS-PM) analysis to examine the impact of coconut-fiber biochar (CFB) on the translocation, accumulation, and detoxification mechanisms of Pb in soil-rice systems. The results demonstrated a significant decrease (p < 0.05) in bioavailable Pb concentration in paddy soils with CFB amendment, as well as reduced Pb concentrations in rice roots, shoots, and brown rice. Synchrotron-based micro X-ray fluorescence analyses revealed that CFB application inhibited the migration of Pb to the rhizospheric soil region, leading to reduced Pb uptake by rice roots. Additionally, the CFB treatment decreased Pb concentrations in the cellular protoplasm of both roots and shoots, and enhanced the activity of antioxidant enzymes in rice plants, improving their Pb stress tolerance. PLS-PM analyses quantified the effects of CFB on the accumulation and detoxification pathways of Pb in the soil-rice system. Understanding how biochar influences the immobilization and detoxification of Pb in soil-rice systems could provide valuable insights for strategically using biochar to address hazardous elements in complex agricultural settings.


Subject(s)
Oryza , Soil Pollutants , Oryza/metabolism , Cocos , Lead/analysis , Soil/chemistry , Soil Pollutants/metabolism , Charcoal/chemistry , Cadmium/metabolism
16.
Environ Sci Pollut Res Int ; 31(16): 24302-24314, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441736

ABSTRACT

Solidification/stabilization (S/S) is a typical technique to immobilize toxic heavy metals in Municipal solid waste incineration fly ash (MSWI FA). This study utilized blast furnace slag, steel slag, desulfurization gypsum, and phosphoric acid sludge to develop a novel metallurgical slag based cementing material (MSCM). Its S/S effects of MSWI FA and long-term S/S effectiveness under dry-wet circulations (DWC) were evaluated and compared with ordinary Portland cement (OPC). The MSCM-FA block with 25 wt.% MSCM content achieved 28-day compressive strength of 9.38 MPa, indicating its high hydration reactivity. The leaching concentrations of Pb, Zn and Cd were just 51.4, 1895.8 and 36.1 µg/L, respectively, well below the limit standard of Municipal solid wastes in China (GB 16889-2008). After 30 times' DWC, leaching concentrations of Pb, Zn and Cd for MSCM-FA blocks increased up to 130.7, 9107.4 and 156.8 µg/L, respectively, but considerably lower than those for OPC-FA blocks (689, 11,870.6 and 185.2 µg/L, respectively). The XRD and chemical speciation analysis revealed the desorption of Pb, Zn and Cd attached to surface of C-S-H crystalline structure during the DWC. The XPS and SEM-EDS analysis confirmed the formation of Pb-O-Si and Zn-O-Si bonds via isomorphous replacement of C-A-S-H in binder-FA blocks. Ettringite crystalline structure in OPC-FA block was severely destructed during the DWC, resulting in the reduced contents of PbSO4 and CaZn2Si2O7·H2O and the higher leachability of Pb2+ and Zn2+.


Subject(s)
Metals, Heavy , Refuse Disposal , Coal Ash/chemistry , Solid Waste/analysis , Particulate Matter/chemistry , Cadmium/analysis , Lead/analysis , Metals, Heavy/analysis , Carbon/chemistry , Incineration/methods , Refuse Disposal/methods
17.
Int J Hyg Environ Health ; 258: 114348, 2024 May.
Article in English | MEDLINE | ID: mdl-38479164

ABSTRACT

OBJECTIVE: Exposure to ambient PM2.5 and its bound metals poses a risk to health and disease, via, in part, oxidative stress response. A variety of oxidative stress markers have been used as markers of response, but their relevance to environmental exposure remains to be established. We evaluated, longitudinally, a battery of oxidative stress markers and their relationship with the exposure of PM2.5 and its bound metals in a panel of healthy participants. MATERIAL AND METHODS: Levels of residence- and personal-based ambient air PM2.5 and its bound metals, as well as of lung function parameters, were assessed in a total of 58 questionnaire-administered healthy never smoker participants (male, 39.7%). Levels of urinary oxidative stress markers, including Nε-(hexanoyl)-lysine (HEL; an early lipid peroxidation product), 4-hydroxynonenal (4-HNE), N7-methylguanine (N7-meG), and 8-hydroxy-2-deoxyguanosine (8-OHdG), plasma antioxidants [superoxide dismutase (SOD) and glutathione peroxidase (GPx), and urinary metals were measured by ELISA, LC-MS, and ICP-MS, respectively. The results of three repeated measurements at two-month intervals were analyzed using the Generalized Estimating Equation (GEE). RESULTS: After adjusting for confounders, residence- and personal-based PM2.5 levels were positively associated with HEL (ß = 0.22 and 0.18) and N7-meG (ß = 0.39 and 0.13). Significant correlations were observed between personal air PM2.5-Pb and urinary Pb with HEL (ß = 0.08 and 0.26). While FVC, FEV1, FEV1/FVC, MMF, and PEFR predicted% were normal, a negative interaction (pollutant*time, P < 0.05) was noted for PM2.5-V, Mn, Co, Ni, Zn, As, and Pb. Additionally, a negative interaction was found for N7-meG (ß = -21.35, -18.77, -23.86) and SOD (ß = -26.56, -26.18, -16.48) with FEV1, FVC, and PEFR predicted%, respectively. CONCLUSION: These findings emphasize potential links between environmental exposure, internal dose, and health effects, thereby offering valuable markers for future research on metal exposure, oxidative stress, and health outcomes.


Subject(s)
Air Pollutants , Humans , Male , Air Pollutants/analysis , Particulate Matter/analysis , Healthy Volunteers , Lead/analysis , Environmental Exposure/analysis , Oxidative Stress , Superoxide Dismutase
18.
Sci Total Environ ; 925: 171770, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38499093

ABSTRACT

The exploration of microbial resources to reduce Pb accumulation in rice attracted great attention. In this study, we found Penicillium oxalicum SL2, a Pb-tolerant strain with good capability of dissolving phosphorus and stabilizing Pb in soil, was able to colonize on the root surface of rice seedlings without additional carbon sources, and promoted the secretion of metabolites related to amino acid metabolism, organic acid metabolism, signal transduction and other pathways in rhizosphere exudates, in which the secretion of oxalate increased by 47.7 %. However, P. oxalicum SL2 increased Fe(II) proportion and Fe availability on the root surface, resulting in iron plaque content decrease. Moreover, by converting root surface Pb from Pb-Fe state to PbC2O4 and Pb-P compounds, P. oxalicum SL2 increased Pb intercept capacity of iron plaque by 118.0 %. Furthermore, P. oxalicum SL2 regulated element distribution on the root surface, and reduced the relative content of Pb on the maturation zone of root tip, which was conducive to reducing Pb uptake by apoplastic pathway and the risk of Pb accumulation in root system. Our findings further revealed the interaction between P. oxalicum SL2 and rice root, providing a theoretical basis for the development and application of microbial agents in Pb-contaminated farmland.


Subject(s)
Oryza , Penicillium , Soil Pollutants , Iron/analysis , Lead/analysis , Soil Pollutants/analysis , Soil/chemistry , Plant Roots/metabolism
19.
Biochem Biophys Res Commun ; 709: 149827, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38554600

ABSTRACT

This study explored the uptake of lead in the epigeic earthworm Dendrobaena veneta exposed to 0, 1000, and 2500 µg Pb/g soil. The soil metal content was extracted using strong acid digestion and water leaching, and analysed by means of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to estimate absolute and bioavailable concentrations of metals in the soil. The guts and heads of lead-exposed earthworms were processed into formalin-fixed and paraffin embedded sections for high-resolution multi-element metallomic imaging via Laser Ablation ICP-MS (LA-ICP-MS). Metallomic maps of phosphorus, zinc, and lead were produced at 15-µm resolution in the head and gut of D. veneta. Additional 4-µm resolution metallomic maps of the earthworm brains were taken, revealing the detailed localisation of metals in the brain. The Pb bioaccumulated in the chloragogenous tissues of the earthworm in a dose-dependent manner, making it possible to track the extent of soil contamination. The bioaccumulation of P and Zn in earthworm tissues was independent of Pb exposure concentration. This approach demonstrates the utility of LA-ICP-MS as a powerful approach for ecotoxicology and environmental risk assessments.


Subject(s)
Metals, Heavy , Oligochaeta , Soil Pollutants , Animals , Ecotoxicology , Lead/toxicity , Lead/analysis , Metals, Heavy/toxicity , Brain , Soil/chemistry , Soil Pollutants/toxicity , Soil Pollutants/analysis
20.
Environ Geochem Health ; 46(4): 129, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483651

ABSTRACT

The issue of potentially toxic elements (PTEs) contamination of regional soil caused by mining activities and tailings accumulation has attracted wide attention all over the world. The East Qinling is one of the three main molybdenum mines in the world, and the concentration of PTEs such as Hg, Pb and Cu in the slag is high. Quantifying the amount of PTEs contamination in soil and identifying potential sources of contamination is vital for soil environmental management. In the present investigation, the pollution levels of 8 PTEs in the Qinling molybdenum tailings intensive area were quantitatively identified. Additionally, an integrated source-risk method was adopted for resource allocation and risk assessment based on the PMF model, the ecological risk, and the health risk assessment model. The mean concentrations of Cu, Ni, Pb, Cd, Cr, Zn, As, and Hg in the 80 topsoil samples ranged from 0.80 to 13.38 times the corresponding background values; notably high levels were observed for Pb and Hg. The source partitioning results showed that PTEs were mainly affected by four pollution sources: natural and agricultural sources, coal-burning sources, combined transport and mining industry sources, and mining and smelting sources. The health risk assessment results revealed that the risks of soil PTEs for adults are acceptable, while the risks for children exceeded the limit values. The obtained results will help policymakers to obtain the sources of PTEs of tailing ponds intensive area. Moreover, it provides priorities for the governance of subsequent pollution sources and ecological restoration.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Child , Adult , Humans , Soil , Metals, Heavy/toxicity , Metals, Heavy/analysis , Molybdenum/analysis , Lead/analysis , Ponds , Environmental Monitoring/methods , Soil Pollutants/toxicity , Soil Pollutants/analysis , Mercury/analysis , Risk Assessment , China
SELECTION OF CITATIONS
SEARCH DETAIL
...